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Abstract
Experimentally, two ordered phases of tetragonal symmetry, namely metastable
δ′-Ti2N and stable ε-Ti2N, are found for titanium nitrides of composition Ti2N,
whereas for titanium carbides TiCx with x near 0.5 two ordered phases with
cubic and trigonal symmetry, respectively, can be traced. By experiment,
either cubic Fd3m-Ti2C is found to be a metastable phase which transforms
at lower temperatures to trigonal R3̄m-Ti2C, or it is detected to be stable for
C contents of 0.52 � x � 0.55 and metastable for higher C concentrations
of 0.56 � x � 0.58. FP-LMTO calculations confirm the latter and previous
FLAPW investigations the former findings.

In the present work, new FLAPW calculations based on the generalized
gradient approximation (GGA) for the exchange–correlation potential and using
the FLAIR code with force optimization are undertaken for Fd3m- and R3̄m-
Ti2C, for δ′- and ε-Ti2N and, for comparison, also for the fictitious phases δ′-
Ti2C, ε-Ti2C, Fd3m-Ti2N and R3̄m-Ti2N. These calculations result in cubic
Fd3m-Ti2C being the most stable phase and more stable than trigonal R3̄m-
Ti2C by 5.0 kJ mol−1 at 0 K, provided that the Ti atoms are allowed to relax.
For the nitrides, ε-Ti2N is found to be the most stable phase and more stable
than δ′-Ti2N by 3.3 kJ mol−1.

1. Introduction

Transition metal carbides and nitrides are chemically stable, very hard, melt at high
temperatures and show a high electric and thermal conductivity. This unique combination
of properties makes them highly suitable for various technological applications [1]. They
often crystallize in the fcc B1 (NaCl) structure over a wide range of concentration, and their
properties are then very sensitive to the concentration and ordering of the structural vacancies
on the non-metal sublattice sites.

Regarding the Ti compounds, the cubic δ-phase with the B1 structure and with vacancies
statistically distributed on the non-metal sublattice sites can be traced for titanium carbides
TiCx with 0.48 � x � 1.0 [2, 3] and for titanium nitrides TiNx with 0.42 � x � 1.02 [4–6].

However, by annealing samples with a specific concentration of vacancies, stable ordered
defect structures crystallizing in periodic superlattices can be formed [7, 8].
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Thus, after annealing TiNx samples with 0.5 � x � 0.6 at 773 K, ordered, tetragonally
distorted δ′-Ti2N [9–11] is generated. This compound is, however, only metastable [12–14] and
transforms by ageing into stable ε-Ti2N crystallizing in the tetragonal antirutile structure [15].
Former FLAPW band-structure calculations also find ε-Ti2N to be more stable than δ′-
Ti2N [16].

For TiCx (x ≈ 0.5), on the other hand, two different ordered phases, can be traced, namely
cubic Fd3m-Ti2C [17, 18] with 12 atoms per unit cell and trigonal R3̄m-Ti2C [18–20] with
three atoms per unit cell. The unit cells of the four ordered defect structures are shown in
figure 1.

Experimental investigations disagree about their relative stabilities. At temperatures
greater than 700 K, the trigonal phase was found to be stable and the cubic phase metastable
for samples of carbon content 0.6 < x < 0.67, whereas samples with lower C content
segregated [7]. By high-resolution electron microscopy, an ordered carbide of composition
TiC0.59 was identified as R3̄m-Ti2C [21]. Some experiments on samples of a composition near
TiC0.6 [22, 23] indicate the ordered cubic phase to be stable at higher and the trigonal phase
at lower temperatures. For a sample of composition TiC0.62, trigonal R3̄m-Ti2C was found to
be stable at temperatures below 1053 K [22]. From neutron diffraction studies for samples of
composition TiC0.59 and TiC0.62, it was deduced that the trigonal phase should be stable below
770 K and the cubic phase stable between 770 and 790 K [23]. However, Fd3m-Ti2C also
occurs at lower temperatures as a metastable phase because the formation of R3̄m-Ti2C from
disordered TiCx and also from ordered Fd3m-Ti2C is kinetically hindered [22, 23].

Other experiments identify Fd3m-Ti2C as the stable phase for C contents 0.52 � x � 0.55
and R3̄m-Ti2C as stable only for higher C contents of 0.56 � x � 0.58 [24]. Furthermore,
transition temperatures from 1000 K [7, 18, 20, 23, 24] to 2000 K [17, 25] are reported in the
literature. Due to these experimental uncertainties, the ordered defect structures of Ti2C are not
included in some Ti–C phase diagrams [26].

First-principles calculations also furnish diverging results concerning the relative stabilities
of the two Ti2C phases. In contrast to the present work, a former FLAPW band-structure
calculation [27] finds trigonal R3̄m-Ti2C to be more stable than the cubic phase by
34.8 kJ mol−1. On the other hand, an FP-LMTO calculation [28] results in cubic Fd3m-Ti2C
with relaxed Ti atoms being more stable than trigonal R3̄m-Ti2C by 1.8 kJ mol−1. However,
both full-potential calculations [27, 28] produce quite similar densities of states (DOSs) and
also agree in the stabilizing effect of the Ti atom relaxation for the cubic phase.

A calculated phase diagram for the vacancy-ordered structures in substoichiometric TiCx ,
established from Monte Carlo simulations, finds the ordered cubic phase to be stable below
1000 K for C contents between x = 0.5 and 0.6 and coexisting with the trigonal phase for C
contents between x = 0.6 and 0.7 [29].

In order to clear up the existing discrepancies for the carbide phases and to find a
quantitative explanation for the different stabilities of the respective ordered phases amongst
the carbides and the nitrides, new FLAPW [30] calculations were undertaken for Fd3m- and
R3̄m-Ti2C, for δ′- and ε-Ti2N and, for comparison, also for the fictitious phases δ′-Ti2C, ε-
Ti2C and, for the first time, also for Fd3m-Ti2N and R3̄m-Ti2N. Furthermore, the present work
presents some important results not contained in [16], respectively [27], such as the formation
energies of the four Ti2N phases and some electron-density contour plots.

2. Computational aspects

For the present FLAPW calculations, another code than in [16] and in [27], namely the FLAIR
code [31], was used. Besides other options, this code offers a choice of different exchange–
correlation potentials and also the possibility of calculating the forces acting on the atoms.
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Figure 1. Unit cells of the four ordered defect structures (a) Fd3m-Ti2X, (b) R3̄m-Ti2X, (c) δ′-
Ti2X and (d) ε-Ti2X (X = C, N). Full circles, C (N) atoms; empty circles, Ti atoms (Fd3m-Ti2X:
vacancies, Ti atoms not shown). The unit cells of Fd3m-Ti2X and δ′-Ti2X are drawn in a B1 lattice.
For R3̄m-Ti2C, one-third of the hexagonal unit cell is shown.

All calculations were performed for a temperature of 0 K and solely for completely ordered
phases with the stoichiometric composition Ti2C(N), corresponding to a C (N) content of
x = 0.5 for TiC(N)x .

The wavefunctions were expanded into ≈150 so-called augmented plane waves per atom
with wavevectors up to gmax = 4.6 in units of 2π/a. The potential and the electron density
were expanded into spherical harmonics up to lmax = 8 in the muffin-tin spheres around the
atomic sites and into a Fourier series up to Kmax = 10.0 (in units of 2π/a) in the interstitial
space. For the muffin-tin radii, the same values as in the previous FLAPW calculations [16, 27]
were chosen (rTi = 1.0577 Å, rC,N = 0.9166 Å).

The Ti 3s and 3p states were treated as core states with a correction for the tails of
the corresponding atomic wavefunctions extending outside the muffin-tin spheres. Using the
FLAIR code, it is no longer necessary to give the energy parameters of the Ti s and p states
fixed values in order to avoid the occurrence of ghost bands as had to be done in the former
FLAPW calculations [16, 27]. Therefore, in the present work all energy parameters including
the Ti 3s and 3p parameters were determined from the centre of gravity of the corresponding
l-like energy bands of the previous iteration. All core states were treated fully relativistically.

For all Ti2N and Ti2C phases, GGA (generalized gradient approximation) band-structure
calculations with a PW91 exchange–correlation potential [32] were performed.

In all structures, the Ti atoms were allowed to relax. For each geometry, the relaxations
and energy minima were determined by calculating and optimizing the forces acting on the
atoms.

The equilibrium geometries and total energy minima for either relaxed or unrelaxed Ti
atoms were determined by Birch fits [33] to the total energies calculated at various volumes.
For the trigonal and tetragonal structures, the c/a ratios were also optimized.

For the integration in �k space, Fermi-broadened one-electron energy states were calculated
at 72 (Fd3m-Ti2C (Ti2N)), 288 (both R3̄m-Ti2C (Ti2N) and ε-Ti2C (Ti2N)) and 244 (δ′-Ti2C
(Ti2N)) �k points in the irreducible wedges of the respective Brillouin zones. These �k meshes
were regarded to be sufficiently large because the total energies did not change significantly
when energy states at a higher number of �k points were taken into account. A Fermi-function
broadening of 0.003 eV was used throughout.

In order to enable the comparison with thermodynamic data, the formation energies per
atom Eform were calculated for the carbide phases by
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Figure 2. Formation energies (in kJ mol−1 of Ti2C) of various ordered titanium carbide phases
of composition Ti2C resulting from GGA-PW91 band-structure calculations: (a) unrelaxed Fd3m-
Ti2C; (b) relaxed Fd3m-Ti2C; (c) unrelaxed R3̄m-Ti2C, optimized c/a ratio (4.6259); (d) relaxed
R3̄m-Ti2C, optimized c/a ratio (4.7232); (e) unrelaxed δ′-Ti2C, c/a = 2.0; (f) relaxed δ′-
Ti2C, c/a = 2.0; (g) unrelaxed δ′-Ti2C, c/a = 2.1; (h) relaxed δ′-Ti2C, optimized c/a ratio
(2.1); (i) unrelaxed ε-Ti2C, optimized c/a ratio (0.62034); (j) relaxed ε-Ti2C, optimized c/a ratio
(0.62648).

Eform = E(TimCn) − m E(Tihcp) − nE(CGraphite)

n + m
(1)

and for the nitride phases by

Eform = E(TimNn) − m E(Tihcp) − nE(N2(g))

n + m
. (2)

3. Results

3.1. Ti2C phases

3.1.1. Energetics. Figure 2 shows the volume dependence of the formation energies of
unrelaxed and relaxed Fd3m-Ti2C, of unrelaxed and relaxed R3̄m-Ti2C with the optimized
c/a ratio, respectively, of fictitious unrelaxed and relaxed δ′-Ti2C with c/a = 2.0 and
c/a = 2.1, respectively, and of fictitious unrelaxed and relaxed ε-Ti2C with the optimized
c/a ratio, respectively. The plots are based on GGA band-structure calculations with the PW91
exchange–correlation potential [32].

In opposition to [27] but in agreement with [28], relaxed Fd3m-Ti2C is found to be the
most stable phase. The least stable structure turns out to be unrelaxed δ′-Ti2C.

The differences in the energetics resulting from the present work and the former FLAPW
calculation [27] can be ascribed to now using a newer, more reliable code, to determining the
equilibrium geometries by force optimization instead of simply minimizing the total energy and
to using a different approximation for the exchange–correlation potential (GGA-PW91 instead
of LDA-HL [34]).
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Table 1. Relaxation of Ti atoms in Fd3m-Ti2C, R3̄m-Ti2C, δ′-Ti2C and ε-Ti2C.

Method
Relaxation
(Å)

Relaxation energy
(kJ mol−1)

Volume
increase (%)

Fd3m-Ti2C

GGA/FLAPW 0.038 −13.9 4.6
LDA/FLAPW [27] 0.038 −8.4 2.3
LDA/FP-LMTO [28] 0.080 −11.7 3.0
GGA/VASP [38] 0.054 — —
exp. [17] 0.040 — —

R3̄m-Ti2C

GGA/FLAPW
c/a = 4.7232 0.038 −6.6 3.5
GGA/VASP [38]
c/a = 4.6832 0.064 — —

δ′-Ti2C

GGA/FLAPW
c/a = 2.0 0.067 −11.2 2.7
c/a = 2.1 0.105 −21.2 2.5

ε-Ti2C

GGA/FLAPW
c/a = 0.6265 0.008 −0.8 0.3

Unrelaxed trigonal R3̄m-Ti2C is stabilized by a distortion reducing the experimental
c/a ratio by 5%. When the Ti atoms are allowed to relax, the optimized c/a ratio rises
to 4.7232 (still 3% below the experimental value), but even then trigonal R3̄m-Ti2C at the
corresponding equilibrium volume is less stable by 5 kJ mol−1 than relaxed cubic Fd3m-
Ti2C.

For all phases, the Ti atoms are found to relax (see also table 1). For Fd3m-Ti2C and δ′-
Ti2C, the relaxations of the Ti atoms refer to the ideal positions of the fcc sublattice, for R3̄m-
Ti2C to their experimental atomic coordinates and for fictitious ε-Ti2C to the experimental
coordinates of the Ti atoms in ε-Ti2N. The relaxation of the Ti atoms reduces the nearest-
neighbour Ti–C distance and lowers the total energy. The calculated relaxation for Fd3m-Ti2C
agrees well with the experimental value [17].

The stabilizing effect of relaxation becomes more important with increasing volume.
Therefore, the calculated equilibrium volumes of the relaxed carbides are larger than the
equilibrium volumes of the unrelaxed carbides.

Relaxation and relaxation energy are largest for δ′-Ti2C. They increase with the c/a ratio.
In table 2, the equilibrium geometries, bulk moduli and formation energies (in kJ Mol−1)

for different Ti2C phases resulting from the present GGA-FLAPW band-structure calculations
are shown together with various calculated and experimental values from the literature and
especially with results for Fd3m- and R3̄m-Ti2C from recent VASP calculations [38].

In order to be comparable with the FLAPW results, the VASP calculations were also
performed assuming the Ti 3p states to be core states.

Both calculations predict relaxed Fd3m-Ti2C to be more stable than trigonal R3̄m-Ti2C
and find a reduction of the equilibrium c/a ratio of R3̄m-Ti2C with respect to the experimental
value, but the equilibrium lattice parameters of the GGA/FLAPW calculation with relaxed Ti
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Table 2. Equilibrium lattice parameters (in Å), compression moduli B0 (in GPa) and formation
energies (in kJ mol−1) of various ordered titanium-carbide phases with unrelaxed and relaxed Ti
atoms.

Unrelaxed Ti Relaxed Ti

Method a c B0 Eform a c B0 Eform

Fd3m-Ti2C

GGA/FLAPW 8.64 — 200 −176.0 8.77 — 163 −189.8
LDA/FLAPW [27] 8.49 — 208 −200.1 8.55 — 207 −208.3
LDA/FP-LMTO [28] 8.41 — 213 −183.9 8.50 — 204 −195.7
GGA/FP-LMTO [37] 8.54 — 177 — — — — —
LDA/VASP [38] — — — — 8.48 — — −190.2
GGA/VASP [38] — — — — 8.64 — — −192.2
exp. — — — — 8.60 — 178 −195.7a [39]

— — — — [17] — [37] −192.2a [40]

R3̄m-Ti2C

GGA/FLAPW
c/a = 4.6259 3.11 14.39 211 −179.2 — — — —
c/a = 4.7232 — — — — 3.13 14.78 126 −184.7
LDA/FLAPW [27]
c/a = 4.6259 3.05 14.13 211 −243.0 — — — —
LDA/FP-LMTO [28]
c/a = 4.8956 2.97 14.54 — −193.4 — — — —
LDA/VASP [38]
c/a = 4.6713 — — — — 3.03 14.15 — −188.6
GGA/VASP [38]
c/a = 4.6832 — — — — 3.09 14.45 — −190.3
exp.:
c/a = 4.8694 [7] 3.06 14.91 — — — — — —

δ′-Ti2C

GGA/FLAPW
c/a = 2.0 4.33 8.66 179 −158.2 4.37 8.74 154 −169.3
c/a = 2.1 4.27 8.98 194 −153.2 4.31 9.05 161 −174.5
LDA/FLAPW [27]
c/a = 2.0 4.25 8.50 212 −220.5 4.28 8.56 216 −228.8
c/a = 2.05 — — — — 4.24 8.90 218 −230.0

ε-Ti2C

GGA/FLAPW 5.11 3.17 197 −184.7 5.10 3.20 193 −185.5
LDA/FLAPW [27] 5.03 3.09 — −243.0 — — — —

TiC + Ti (segregation)

GGA/FLAPW — — — −152.0 — — — —
LDA/FLAPW [27] — — — −186.3 — — — —

a Hex. α-Ti2C.

atoms exceed those of the GGA/VASP calculation by 1.3% to 2.3%, and the FLAPW formation
energies are also somewhat lower than the VASP results.

These differences can possibly be attributed to the taking over of a rather small value for
the Ti muffin-tin radius from former calculations. Theoretically, the results of a converged
FLAPW calculation should be independent of the muffin-tin radii. However, for a small Ti
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Table 3. Transformation energies from trigonal to cubic Ti2C in kJ mol−1: (a) unrelaxed R3̄m-
Ti2C (optimized c/a) to unrelaxed Fd3m-Ti2C; (b) relaxed R3̄m-Ti2C (optimized c/a) to relaxed
Fd3m-Ti2C.

Method (a) (b)

GGA/FLAPW 3.2 −5.0
LDA/VASP [38] — −0.9
GGA/VASP [38] — −2.2

muffin-tin radius the Ti 3p wavefunctions partly extend into the interstitial and are thus not
well described as core states. In this case, also the corresponding corrections provided by the
FLAPW code might not be sufficient.

Compared to experiment, the lattice parameters of the present GGA/FLAPW calculation
deviate by +2.3% (lattice parameter a) and −0.9% (lattice parameter c) for R3̄m-Ti2C and
+2% (lattice parameter a) for Fd3m-Ti2C. As quite often for GGA calculations, binding seems
to be underestimated, which also shows up in a lower value for the bulk modulus of Fd3m-
Ti2C. In contrast to this behaviour, all referenced calculations with LDA exchange show the
typical overbinding effect with lower values for the lattice parameters and higher values of the
bulk modulus compared to experiment.

If the c/a ratio is optimized for fictitious δ′-Ti2C with unrelaxed Ti atoms, the minimum
of the total energy lies at c/a = 2.0, corresponding to an fcc lattice with the vacancies at
the positions of the δ′-structure (‘ordered Ti2C’). For relaxed Ti atoms, an optimized c/a
ratio of 2.1 is found. The energy gain by relaxation is quite large for δ′-Ti2C with either
c/a = 2.0 or especially c/a = 2.1, but it is nevertheless not sufficient to make the fictitious
δ′-phase more stable than the other Ti2C phases with relaxed Ti atoms. In the former FLAPW
calculation [27], the fictitious phases δ′-Ti2C and ε-Ti2C were found to be—in disagreement
with the experimental situation—more stable than Fd3m-Ti2C and (in the case of fictitious
ε-Ti2C) also R3̄m-Ti2C.

From the present calculation, fictitious ε-Ti2C—although not found by experiment—
should be thermodynamically as stable as R3̄m-Ti2C in its most stable geometry. For kinetic
reasons, however, its formation is highly improbable, as even the corresponding nitride, ε-Ti2N,
cannot be formed directly but only from a precursor phase, namely metastable δ′-Ti2N [35].
Considering the low stability of δ′-Ti2C, this mechanism of formation is most unlikely to occur
for the carbide.

The experimental formation energies at 298 K (�H B
298) for unspecified hexagonal α-Ti2C

are taken from a recent thermodynamic description of the Ti–C system [39], where different
experimental and calculated values for �H B

298 are summarized and evaluated. From table 2 it
is obvious that all Ti2C phases have a higher formation energy than the system (TiC + Ti) and
can thus be supposed to be stable against segregation into TiC and Ti.

Table 3 shows the calculated transformation energies from cubic Fd3m-Ti2C to trigonal
R3̄m-Ti2C with unrelaxed and relaxed Ti atoms. Whereas the former FLAPW-LDA
calculation [27] predicted the trigonal phase to be more stable than the cubic phase by more
than 30 kJ mol−1, the present calculation furnishes a different result. Without relaxation of the
Ti atoms, the trigonal phase in its equilibrium geometry is still more stable by 3.2 kJ mol−1

than the cubic phase, whereas, owing to the much larger relaxation energy of the cubic phase,
relaxed Fd3m-Ti2C is now more stable by 5.0 kJ mol−1 than relaxed trigonal R3̄m-Ti2C.

In the VASP calculations [38], relaxed cubic Fd3m-Ti2C is also found to be the most stable
phase, but with a smaller energy difference from the trigonal phase compared to the FLAPW
value.
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Figure 3. GGA-PW91 densities of states of relaxed (full line) and unrelaxed (dashed line)
(a) Fd3m-Ti2C; (b) R3̄m-Ti2C; (c) δ′-Ti2C; (d) ε-Ti2C. The densities of states are plotted in
units of states of both spin directions per electronvolt and unit cell (containing for R3̄m-Ti2C one,
for δ′-Ti2C and ε-Ti2C two, and for Fd3m-Ti2C four formula units of Ti2C per unit cell).

3.1.2. Densities of states. Figure 3 shows the GGA densities of states (DOS) of the four Ti2C
phases considered here with relaxed as well as with unrelaxed Ti atoms. Further, in figure 4
their partial local C s, C p and Ti d densities of states are presented.

The lowest DOS peak at approximately −10 eV (‘s band’) can be ascribed to C 2s states
interacting to a certain extent with Ti 3d states. After a gap of 2.4–2.8 eV there comes a peak
with two or three subpeaks (‘p band’) originating from C 2p states interacting with Ti 3d states.
The p band subpeaks are most pronounced for R3̄m- and ε-Ti2C.

After a sharp minimum follows the ‘d band’, originating mainly from Ti d states. The
lowest d band peak situated below EF can be ascribed to Ti 3d states interacting across the C
vacancies and thus lowered in energy compared to the other Ti 3d states.

A detailed analysis of the states contributing to the different DOS peaks can be found
in [27].

The main difference between the densities of states of the four phases lies in the position
of the Fermi level. For relaxed Fd3m-Ti2C and for R3̄m-Ti2C, it lies in a most favourable
position, namely in the DOS minimum separating the lowest d band peak from the rest of the
d band. For the fictitious phases δ′- and ε-Ti2C, it is situated—much less favourably—in this
peak.

For unrelaxed Fd3m-Ti2C, the Fermi level also lies in a small DOS peak, and the p and
d bands are not separated by a pronounced DOS minimum. However, relaxation leads to

8
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Figure 4. GGA-PW91 local Ti d (full line), C p (dashed line) and C s (dotted line) partial densities
of states of relaxed (a) Fd3m-Ti2C; (b) R3̄m-Ti2C; (c) δ′-Ti2C; (d) ε-Ti2C. The local densities of
states are plotted in units of states of both spin directions per electronvolt and atom.

significant changes of the DOS which can serve as an explanation for the considerable energy
gain by relaxation of the Ti atoms for this structure. For relaxed Fd3m-Ti2C, the states in the
C p band describing C p–Ti d bonds are lowered in energy, the small DOS peak at the Fermi
level disappears and the Fermi energy now lies in the newly formed energy minimum.

Relaxation effects are also considerable for the DOS of fictitious δ′-Ti2C. Only after
relaxation of the Ti atoms, the Ti d states at the bottom of the d band peak are separated by
a distinct minimum from the rest of the d band.

Much smaller are the effects of relaxation on the DOS of R3̄m-Ti2C. For ε-Ti2C, they are
even too small to be visible in the DOS plot.

3.2. Ti2N phases

3.2.1. Energetics. Figure 5 shows the Birch fits for fictitious unrelaxed and relaxed Fd3m-
Ti2N and R3̄m-Ti2N, for stable ε-Ti2N and for unrelaxed and relaxed δ′-Ti2N with a c/a ratio
of 2.0 (corresponding to ‘ordered’ Ti2N) and with the equilibrium c/a ratio of 2.16 for relaxed
δ′-Ti2N, respectively. The plots are again based on GGA band-structure calculations with the
PW91 exchange–correlation potential [32].

In agreement with experiment [12–14] and with previous LDA-FLAPW band-structure
calculations [16], ε-Ti2N is found to be the most stable phase at the equilibrium volume of
38.6 Å

3
. For this compound, the Ti atoms do not relax from their experimental positions and

the equilibrium c/a ratio coincides with the experimental value.

9



J. Phys.: Condens. Matter 19 (2007) 196226 R Eibler

Figure 5. Total energies (in kJ mol−1 of Ti2N) of various ordered titanium nitride phases of
composition Ti2N resulting from GGA-PW91 band-structure calculations: (a) unrelaxed Fd3m-
Ti2N; (b) relaxed Fd3m-Ti2N; (c) unrelaxed R3̄m-Ti2N, c/a = 4.7720; (d) relaxed R3̄m-Ti2N,
c/a = 4.7233; (e) unrelaxed δ′-Ti2N, c/a = 2.0; (f) relaxed δ′-Ti2N, c/a = 2.0; (g) unrelaxed
δ′-Ti2N, c/a = 2.16; (h) relaxed δ′-Ti2N, optimized c/a (2.16); (i) ε-Ti2N.

Table 4. Relaxation of Ti atoms in Fd3m-, R3̄m-and δ′-Ti2N.

Relaxation Relaxation energy Volume
Method (Å) (kJ mol−1 of Ti2N) increase (%)

Fd3m-Ti2N

GGA/FLAPW 0.014 −2.0 1.6

R3̄m-Ti2N

GGA/FLAPW
c/a = 4.7233 0.011 −5.9 3.0

δ′-Ti2N

GGA/FLAPW
c/a = 2.0 0.085 −16.1 1.9
c/a = 2.16 0.144 −30.3 2.5

LDA-FLAPW [16]
c/a = 2.0 0.095 −15.3 —
c/a = 2.1126 0.140 −28.8 —

exp. [11]
c/a = 2.1174 0.123 — —

For all other phases, table 4 shows the Ti relaxations and relaxation energies together
with the increase of the equilibrium volume if the Ti atoms are allowed to relax. For Fd3m-
Ti2N and δ′-Ti2N, the relaxations of the Ti atoms again refer to the ideal positions of the fcc
sublattice, for ε-Ti2N to their experimental atomic coordinates and for fictitious R3̄m-Ti2N to
the experimental coordinates of the Ti atoms in R3̄m-Ti2C.
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Table 5. Equilibrium lattice parameters (in Å), compression moduli B0 (in GPa) and formation
energies (in kJ mol−1) of various ordered titanium nitride phases with unrelaxed and relaxed Ti
atoms. The calculated values are valid for 0 K.

Unrelaxed Ti Relaxed Ti

Method a c B0 Eform a c B0 Eform

Fd3m-Ti2N

GGA/FLAPW 8.54 — 236 −348.1 8.58 — 153 −350.1

R3̄m-Ti2N

GGA/FLAPW
c/a = 4.7720 3.04 14.51 182 −344.2 — — —
c/a = 4.7233 — — — — 3.08 14.55 111 −350.1

δ′-Ti2N

GGA/FLAPW
c/a = 2.0 4.27 8.54 208 −346.5 4.30 8.60 192 −362.7
c/a = 2.16 4.16 8.99 262 −338.7 4.19 9.05 168 −368.2
LDA/FLAPW [16]
c/a = 2.1126 4.12 8.72 232 — — — — —
exp. [11]
c/a = 2.1174 — — — — 4.15 8.79 — —

ε-Ti2N

GGA/FLAPW 5.01 3.08 108 −372.1 5.01 3.08 122 −372.1
LDA/FLAPW [16] 4.91 3.02 231 — — — — —
exp. [15] — — — — 4.94 3.04 — —

Ordered Ti2N

LDA/FLAPW [36] 4.13 — 233 — — — — —

TiN + Ti (segregation)

GGA/FLAPW — — — −322.1 — — — —

Among the unrelaxed structures, the least stable phase is again unrelaxed δ′-Ti2N with
c/a = 2.16. However, the energy difference from the other unrelaxed phases is much smaller
than for the carbide, and the large energy gain of 30.3 kJ mol−1 of atoms by relaxation makes
relaxed δ′-Ti2N with c/a = 2.16 more stable than all the other phases apart from ε-Ti2N.
Moreover, the energy difference from ε-Ti2N is rather small (3.2 kJ mol−1 of Ti2N), and from
figure 5 it can be deduced that at larger volumes the δ′-phase could even become the most stable
phase.

Unrelaxed Fd3m-Ti2N is more stable than unrelaxed δ′-Ti2N and R3̄m-Ti2N. However,
and in contrast to the carbide, the energy gain by relaxation is rather small for Fd3m-Ti2N
(2.0 kJ mol−1 of Ti2N). Therefore, relaxed Fd3m-Ti2N is thermodynamically less stable than
all the other phases with relaxed Ti atoms.

Table 5 shows the equilibrium geometries, bulk moduli and formation energies of the four
Ti2N phases and also the formation energy for the case of segregation (Ti2N → TiN + Ti).
Again, all four ordered Ti2N phases are stable against segregation.

The GGA/FLAPW equilibrium lattice parameters of ε-Ti2N deviate by +1.3% from the
experimental values, whereas the values resulting from a former LDA/FLAPW calculation [16]
are lower than experiment by −0.7%.
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Table 6. Transformation energies from δ′-Ti2N to ε-Ti2N (in kJ mol−1 of Ti2N). (a) Unrelaxed
δ′-Ti2N (c/a = 2.0) to ε-Ti2N; (b) unrelaxed δ′-Ti2N (c/a = 2.16) to ε-Ti2N; (c) relaxed δ′-Ti2N
(c/a = 2.0) to ε-Ti2N; (d) relaxed δ′-Ti2N (c/a = 2.16) to ε-Ti2N.

Method (a) (b) (c) (d)

GGA/FLAPW −25.6 −33.5 −9.5 −3.2
LDA/FLAPW [16] −32.5 −38.1 −17.4 −9.4

The lattice parameter a of relaxed δ′-Ti2N (4.19 Å) is only 1% bigger than the experimental
value of 4.15 Å [11]. However, because of the higher calculated equilibrium c/a ratio of 2.16
compared to the experimental c/a ratio of 2.1174 [11], the calculated lattice parameter c of this
compound deviates by almost 3% from the experimental value.

Table 6 shows the transformation energies from unrelaxed and relaxed metastable δ′-Ti2N
to thermodynamically stable ε-Ti2N resulting from the present GGA-FLAPW calculation and
from the former LDA-FLAPW calculation [16]. In both calculations, transformation energies
of more than −25 kJ mol−1 are found for unrelaxed δ′-Ti2N, which are, however, much reduced
by allowing the Ti atoms in δ′-Ti2N to relax. In all cases, the GGA values lie below the LDA
values.

3.2.2. Densities of states. Figure 6 shows the DOS of the four relaxed and unrelaxed Ti2N
phases and figure 7 their partial local N s and p and Ti d densities of states.

Nitrogen is more electronegative than carbon. Therefore, in the nitrides the non-metal s
and p bands are narrower and situated at lower energies compared to the carbides, and the s–p
gap is larger. Also, the p–d mixing in the p band is reduced, and the d band is now separated
from the p band by a pseudogap.

Because of one additional valence electron per formula unit in the nitrides compared to the
carbides, the Fermi level for ε-Ti2N and δ′-Ti2N moves to a favourable position in the minimum
after the first d band peak, and for Fd3m-Ti2N and R3̄m-Ti2N to a less favourable position in
the small peak (shoulder) above this minimum.

The effects of the Ti-atom relaxation on the DOS of R3̄m-Ti2N and Fd3m-Ti2N are small.
In the case of δ′-Ti2N, the stabilizing effect of the considerable Ti atom relaxation is also visible
in the DOS. Relaxation shifts all occupied bonding states in the s, p and first d band peaks to
lower energies and deepens the DOS minimum at the Fermi level. Also, the small peak at the
bottom of the p band is more pronounced for relaxed than for unrelaxed δ′-Ti2N.

3.3. Electron densities

The contour-line plots of the valence-electron densities in the (100) plane of relaxed Fd3m-
Ti2C, Fd3m-Ti2N, δ′-Ti2C and δ′-Ti2N are presented in figures 8 and 9. For the nitride phases,
the plots show—as expected—weaker Tid–C (N) p bonds and stronger d–d bonds between Ti
atoms adjacent to the non-metal vacancies. Moreover, the additionally occupied d band states
in the nitrides change the symmetry of the total valence-electron density around these Ti atoms
from eg-like for the carbides to t2g-like for the nitrides.

If only the contributions to the valence-electron density of states with energies in the energy
range of the p band are added up, one gets the so-called p band electron density. Analogously,
the d band electron density only contains contributions from states in the occupied d band
energy range. The partial electron-density plots show more clearly the bonding situation and
are more suitable for demonstrating the influence of relaxation on chemical bonding than the
total valence-electron density plots.

12



J. Phys.: Condens. Matter 19 (2007) 196226 R Eibler

Figure 6. GGA-PW91 densities of states of relaxed (full line) and unrelaxed (dashed line)
(a) Fd3m-Ti2N; (b) R3̄m-Ti2N; (c) δ′-Ti2N; (d) ε-Ti2N. The densities of states are plotted in
units of states of both spin directions per electronvolt and unit cell (containing for R3̄m-Ti2N one,
for δ′-Ti2N and ε-Ti2N two and for Fd3m-Ti2N four formula units of Ti2N per unit cell).

Figures 10 and 11 thus present the contour-line plots in the (100) plane of the p and d band
electron densities of unrelaxed and relaxed Fd3m-Ti2C and Fd3m-Ti2N; figures 12 and 13
show the p and d band electron-density plots in the (100) plane of unrelaxed δ′-Ti2C and δ′-
Ti2N with c/a = 2.0, and of relaxed δ′-Ti2C with c/a = 2.1 and δ′-Ti2N with c/a = 2.16,
respectively.

These p and d band electron density plots show that in all phases mainly Ti d states with eg

symmetry forming σ bonds with non-metal p states are present in the p band, whereas mainly Ti
d states of t2g symmetry forming Ti d–d bonds can be found in the d band energy range. Some
octahedral d–d bonding between d states at Ti atoms adjacent to the vacancies is already present
in the carbide phases but is found to a greater extent in the nitride phases. The d band electron
density plots of the latter also show—especially for relaxed δ′-Ti2N—d–d bonds between Ti d
states adjacent to the non-metal atoms.

The most remarkable effects by relaxation which also explain the especially high relaxation
energies in these phases are the strengthening of the C p–Ti d bonds in relaxed Fd3m-Ti2C and
the formation of d–d bonds between Ti atoms adjacent to the N atoms in relaxed δ′-Ti2N with
c/a = 2.16.
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Figure 7. GGA-PW91 partial local Ti d (full line), N s (dotted line) and N p (dashed line) densities
of states of relaxed (a) Fd3m-Ti2N; (b) R3̄m-Ti2N; (c) δ′-Ti2N; (d) ε-Ti2N. The local densities of
states are plotted in units of states of both spin directions per electronvolt and atom.

Figures 14 and 15 present the contour-line plots in the (001) plane of the total valence-
electron densities and the p band and the d band electron densities of ε-Ti2C and ε-Ti2N.
The tetragonal antirutile structure consists of Ti2X units aligned in parallel rows in the [110]
direction in the basal plane. The [110] direction coincides with the local z axis.

The p band electron density contour plots (figures 15(a) and (b)) show the Ti and non-metal
atoms in these units to be connected by strong p–d σ bonds between C (N) p and eg-like Ti d
states.

The d band electron density contour plots of ε-Ti2C and ε-Ti2N (figures 15(c) and (d))
reveal that in these phases Ti d states of both eg and (to a lesser extent) t2g symmetry are
responsible for d–d bonding between Ti atoms belonging to parallel Ti2X units. These d–d
bonds are stronger in the nitride than in the carbide. Further, they are also more efficient in
ε-Ti2N than in the other nitride phases, thus explaining the high stability of ε-Ti2N. Stronger
bonds between Ti d states in ε-Ti2N than in δ′-Ti2N were also found in a former APW band
structure calculation [41]. Also, covalent bond densities and bond overlap populations from
first-principles DV-Xα cluster calculations [42] show the Ti–Ti bonds in ε-Ti2N to be much
stronger than in B1-TiN.

The contour-line plots in the (010) plane of the total valence-electron, p band and d band
electron densities of R3̄m-Ti2C and R3̄m-Ti2N are presented in figures 16 and 17. The trigonal
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Figure 8. Contour lines in the (100) plane of the total valence-electron densities of (a) relaxed
Fd3m-Ti2C and (b) relaxed Fd3m-Ti2N. A logarithmic grid of contour lines with xi = 2i/4 has
been used.

Figure 9. Contour lines in the (100) plane of the total valence-electron densities of (a) relaxed δ′-
Ti2C with c/a = 2.1 and (b) relaxed δ′-Ti2N with c/a = 2.16. A logarithmic grid of contour lines
has been used (xi = x02i/4).

R3̄m-structure consists of three-layer strings formed by parallel Ti2X units. The p band electron
density contour plots in figures 17(a) and (b) show the individual Ti2X units to be held together
by strong p–d σ bonds between non-metal p and eg-like Ti d states. The latter also form d–d
bonds with the nearest Ti atoms belonging to the next parallel Ti2X unit within the same string.
However, the Ti d–N p bonds in R3̄m-Ti2N are weaker and above all more ionic than the
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Figure 10. Contour lines in the (100) plane of the p band electron densities of unrelaxed (a) and
relaxed (b) Fd3m-Ti2C, and of unrelaxed (c) and relaxed (d) Fd3m-Ti2N. A logarithmic grid of
contour lines has been used (xi = x02i/4).

Figure 11. Contour lines in the (100) plane of the d band electron densities of unrelaxed (a) and
relaxed (b) Fd3m-Ti2C, and of unrelaxed (c) and relaxed (d) Fd3m-Ti2N. A logarithmic grid of
contour lines has been used (xi = x02i/4).

C–Ti bonds in R3̄m-Ti2C. Therefore, less charge resides on the Ti atoms in R3̄m-Ti2N than
in R3̄m-Ti2C, thus leading in the nitride also to weaker d–d bonds between the nearest Ti–Ti
neighbours.

The d band electron density contour plots of R3̄m-Ti2C and R3̄m-Ti2N (figures 17(c)
and (d)) show the t2g-like Ti d states of these phases in the d band energy range to be involved
in weak d–d bonding between Ti atoms of parallel Ti2X units belonging to different strings, but
also to be of an antibonding nature between nearest Ti neighbours within the same string.
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Figure 12. Contour lines in the (100) plane of the p band electron densities of unrelaxed δ′-Ti2C
with c/a = 2.0 (a), relaxed δ′-Ti2C with c/a = 2.1 (b), unrelaxed δ′-Ti2N with c/a = 2.0
(c) and relaxed δ′-Ti2N with c/a = 2.16 (d). A logarithmic grid of contour lines has been used
(xi = x02i/4).

Figure 13. Contour lines in the (100) plane of the d band electron densities of unrelaxed δ′-Ti2C
with c/a = 2.0 (a), relaxed δ′-Ti2C with c/a = 2.1 (b), unrelaxed δ′-Ti2N with c/a = 2.0
(c) and relaxed δ′-Ti2N with c/a = 2.16 (d). A logarithmic grid of contour lines has been used
(xi = x02i/4).

4. Discussion

The results of the present first-principles calculations for ordered Ti2C(N) phases of
composition TiC0.5 can be resumed as follows.

(i) In agreement with experimental findings for TiCx samples of composition TiC0.52 and
TiC0.54 [24] and also in agreement with a former first-principles FP-LMTO calculation [28]
as well as a calculated phase diagram [29], cubic Fd3m-Ti2C with relaxed Ti atoms is
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Figure 14. Contour lines in the (001) plane of the total valence-electron densities of relaxed ε-
Ti2C (a) and ε-Ti2N (b). A logarithmic grid of contour lines has been used (xi = x02i/4).

Figure 15. Contour lines in the (001) plane of the p band electron densities of relaxed ε-Ti2C (a) and
ε-Ti2N (b) and of the d band electron densities of relaxed ε-Ti2C (c) and ε-Ti2N (d). A logarithmic
grid of contour lines has been used (xi = x02i/4).

found to be the most stable phase for the carbides and more stable by 5 kJ mol−1 than
relaxed trigonal R3̄m-Ti2C.
However, if the Ti atoms are not relaxed the reverse is true, and unrelaxed Fd3m-Ti2C is
less stable by 3.2 kJ mol−1 than unrelaxed R3̄m-Ti2C. Hence, Fd3m-Ti2C is stabilized
with respect to R3̄m-Ti2C only by relaxation of the Ti atoms away from the vacancies
towards the C atoms. This relaxation was found to be largest for ordered TiC0.5 and
decreased with increasing C content [28]. Therefore, the energy gain by relaxation for
cubic Fd3m-Ti2C should also decrease with increasing C content until—corresponding

18



J. Phys.: Condens. Matter 19 (2007) 196226 R Eibler

Figure 16. Contour lines in the (010) plane of the total valence-electron densities of relaxed R3̄m-
Ti2C (a) and R3̄m-Ti2N (b). A logarithmic grid of contour lines has been used (xi = x02i/4).

Figure 17. Contour lines in the (010) plane of the p band electron densities of relaxed R3̄m-Ti2C
(a) and R3̄m-Ti2N (b), and of the d band electron densities of relaxed R3̄m-Ti2C (c) and R3̄m-
Ti2N (d). A logarithmic grid of contour lines has been used (xi = x02i/4).

to the calculated phase diagram [29]—the two phases are coexisting or the sequence of
stability of the two phases is even reversed. Therefore, the present result, which predicts
relaxed Fd3m-Ti2C to be more stable than R3̄m-Ti2C for the exact composition TiC0.5,
is not incompatible with experiments, which find the reverse stability sequence for TiCx

samples of a composition near TiC0.6 [21–24].
Both the Fd3m- and the δ′-structure with c/a = 2 can be constructed by positioning non-
metal vacancies at specific lattice sites of the B1 structure. For the hemicarbides, unrelaxed
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δ′-Ti2C is less stable than unrelaxed Fd3m-Ti2C by as much as 31.6 kJ mol−1. Even the
considerable energy gain by both relaxing the Ti atoms and increasing the c/a ratio from
2.0 to 2.1 is not sufficient to render its formation energy more negative than those of the
other relaxed Ti2C phases. Therefore, in agreement with all experimental findings, the δ-
phase is not a stable phase for the carbides. Accordingly, the Fermi level for this fictitious
phase is not situated in a DOS minimum as is indeed the case for the experimentally traced
phases R3̄m-Ti2C and relaxed Fd3m-Ti2C.
The present calculation predicts fictitious ε-Ti2C to be of comparable stability with relaxed
R3̄m-Ti2C. As already mentioned, however, its formation from the unstable precursor
phase δ′-Ti2C is highly improbable.

(ii) For the heminitrides, unrelaxed δ′-Ti2N is less stable than unrelaxed Fd3m-Ti2N by only
3.6 kJ mol−1. Further, cubic Fd3m-Ti2N is almost not stabilized by relaxation whereas
the relaxation energy of δ′-Ti2N is even larger than for δ-Ti2C. Hence, relaxed Fd3m-Ti2N
(and also relaxed R3̄m-Ti2N) are less stable by 38.1 kJ mol−1 than relaxed δ′-Ti2N with
the optimized c/a ratio of 2.16.
In agreement with experiment [15] and with previous calculations [16], tetragonal ε-Ti2N
is found to be the most stable heminitride phase. However, the energy difference from
relaxed, tetragonally distorted δ′-Ti2N with the optimized c/a ratio of 2.16 is quite small
(3.3 kJ mol−1).
δ′-Ti2N is experimentally found to be the metastable precursor phase for ε-Ti2N whose
direct formation from substoichiometric TiNx is kinetically hindered [35]. Accordingly,
for the nitrides only the Fermi levels of δ′-Ti2N and ε-Ti2N lie in a DOS minimum.

(iii) One explanation for the different relative stabilities of the Fd3m- and the δ′-phase for
carbides and nitrides is based on the different effects of Ti-atom relaxation on the chemical
bonds in these phases, which are visualized in the present work by electron-density contour
plots.
Generally speaking, the reduced number of Ti d–C (N) p bonds in non-stoichiometric
carbides and nitrides with an underlying B1 structure is at least partially compensated by
octahedral bonding involving the 3d states at the Ti atoms octahedrally surrounding the
vacancies, which is found to a certain extent in the carbides but more so in the nitrides.
Further, the relaxation of the metal towards the non-metal atoms (in x-, y- and z-directions
for the Fd3m-structure; merely in the z-direction for the δ′-structure) reduces the nearest-
neighbour Ti–C (N) distance and leads to a strengthening of the remaining Ti–non-metal
bonds. Simultaneously, however, this relaxation weakens the d–d bonds between the Ti
atoms adjacent to the vacancies.
Thus, Fd3m-Ti2N is almost not stabilized by relaxation because in this compound the
stabilizing effect on the Ti–non-metal bonds is compensated by the destabilizing effect on
the Ti–Ti d–d bonds. For Fd3m-Ti2C with fewer occupied octahedral bonding states and
much stronger covalent C p–Ti d bonds, the positive effects of relaxation predominate.
This leads to a large relaxation energy, which makes relaxed Fd3m-Ti2C more stable than
all the other carbide phases.
For the δ′-structure, the overall effect of relaxation and tetragonal distortion increasing the
c/a ratio at constant volume does not only lead to a shorter nearest-neighbour Ti–C (N)
distance strengthening the Ti d–C (N) p bonds, but also to a shorter distance between the Ti
atoms next to the C (N) atoms, which enables stronger d–d bonds between these Ti atoms.
However, the corresponding electronic states are not occupied in the carbide, and these
stronger bonds are therefore only visible in the d band electron density plots of relaxed δ′-
Ti2N. For the same reason, the relaxation energy of δ′-Ti2N exceeds the relaxation energy
of δ′-Ti2C.
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(iv) The transformation of δ′-Ti2N to ε-Ti2N leads to even stronger Ti–Ti d–d bonds making
ε-Ti2N the most stable heminitride phase. In ε-Ti2C, Ti–Ti d–d bonding is less pronounced
because in the carbide fewer of the responsible d band states are occupied.
Trigonal R3̄m-Ti2C is mainly stabilized by strong covalent nearest-neighbour C–Ti p–d
bonds involving states in the p band energy range which are also responsible for some
interlayer d–d bonding between Ti atoms of the same string. In R3̄m-Ti2N, the N–Ti p–d
bonds are not only weaker but also more ionic than in the carbide, leading for the nitride
also to weaker Ti–Ti d–d bonds between nearest Ti neighbours in the same string. Also, the
additional t2g-like occupied Ti d states in the nitride—weakly bonding with respect to the
Ti atoms in the next string but antibonding with respect to the nearest Ti atoms within the
same string—cannot contribute much to its stability. This could explain why R3̄m-Ti2N is
the least stable of all the investigated nitride phases.
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